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C. B. Bell*, R. Ahmd*, C. J. Park*, R. Lui*

San Diego State Univesity D I
"University of Strathclyde, Scotland - "

1. Introduction and S art

Several types of applications entail point processes with "dead"

times after each event. One such family of stochastic processes is

G(PRP), the family of Pareto Renewal Processes. The i.i.d. inter-

arrival times (X} satisfy, P(x) a P(X_ -} X 1 - (=) , x>A> 0j x
and s > 0.

An additional interesting property of the interarrival-time distri-

butions is that they. are all "thick-tailed" relative to the corresponding

distributions for Gaussian processes and Poisson processes. Further,

a variety of tail thicknesses, one for each s-value, is vossible.

These two properties lead to some interesting inference problem , of

which one is here concerned only with signal detection.

SThe Pareto distribution itself was, of course, introduced by

Vilfredo Pareto (1648 - 1923). (See Reference [221). This distribution

has been used and studied by nmerous other authors including Pigon (1932)

This work was principally supported by the Office of Naval Research
through Grant No. N00014-SOC-0208.
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Namelbrot (1960, 1963), Fisk (1961) and Johnson and Kotz (1970).]

Both one-sample and two-sample signal detection problem with

historical data will be considered here. The organization of the paper

is as follows. Section 2 contains the basic properties of the inter-

arrival-time distributions and the ML's (maximm likelihood estimates)

under various circumstances. Section 3 contains the distribution

theory necessary for insight and inference. Most of the proofs for

the results of this section are straightforward. In Section 4, one

introduces the fundmental statistical concepts to be used, namely,

(i) the DOT (Basic Data Transtormation); (ii) the M-S-S (minimal

sufficient statistic); (iii) the N-S-N (muimal statistical noise);

(iv) POP (parametric distribution-free) statistics; and (v) MW)F

(nonparamtric distribution-free) statistics.

Section S discusses the uses of the Kolnogorov-Smirnov (1933)

statistic; and its extensions by Ulliefors (1967, 1969), Srinivasan

(1970) and Y. Choi (1980) in signal detection. Sections 6 and 7 treat

the one-sample and two-saple detection problem, respectively. Tables

sumarizing the results, ar presented at the end of appropriate sections.

Appendix A contains proofs of some of the assertions made in the

paper. Appendix 8 contains numerical examples illustrating each of

4 the detection procedures derived in Sections 6 and 7.

"I
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2. Eleutary Properties and btimators of Pareto Remwal Process

Nust of the results of this section are adaptations of results in

Johnson and Kotz (1970). The Pareto distribution Pa(As) is defined for

each A , 0, S > 0 by

F(x) a
t0 x _A

This is a special form of the Pearson type VI distribution. The Pareto

density function is

fix) - s9s I' s '  for x), A-0.

If X% P(As), then the rth momnt of X exists if mnd only if

r < and Is Oiven by

sAr

The variaace of X is sA2 (s - l 2 (s - 2)1 1 for s ) 2. For further

details on nents, see Malik (1966).

Malik (1966, 1967) has also obtained results on the characteristic

functions of the order statistics from a Pareto distribution as veil as

* recurrence relations between the oments and covariance of the order

statistics. Levy (192S) discovered a class of stable laws (Stable

Paresian) which follow the asymptotic form of the Pareto law.

If X P•(AS), Y * In X, then Y . T-exp(ln A,s) where

-.: ...---.- -... i=,, i d i l i i l i m m
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T-exp(Ss) is trunated-eqpnetial with distribution function

X) 6 1 - * "s ex " 3) for x S. Also if Z a X's  then

Z % U(O, A'). lference for the truncated-exponentia has been studied

by Park and U. Coi (1978). Sl (1981) and signal detection problem for

the uAfom process has been invetilated by Y. Choi-Bell-MIuAd-Park

(1982). Soae of those results vill be used and compared to the ones herein.

Here one is primaily interested in MEs of the Prmeters A

and s. Other types of estimtes are given to Johnson and got& (1970).

The likelihood function for the isterarrival tims (XK. K2 , .... X)

fromaa MU isL sfrom a PIP is L~, I . The proofs of the following theorem

ase swtraihtforward.

Theorem 2.1. (O-e-prm o . 0  knon)

(1) The NL of A Is A X(l), which is distributed s(A, as0);

(ii) I(A) a ns 0 A(m0 - I)- for a 0 ) I and V(s) - ns0 Ains0 - 2)(ns 0 - 1)21 "i

for as 0 2;

(ii) The WNE (inlma variace unbiased estimator) of A is

A* - (as 0 - 1)(aso)l X(1) for = 0 ' 1, and V(A*) o (m 0(m 0 - 2)] 1°A2

for as0  2,

(iv) Doth A and A* ae consistent estimator of A, i.e., A/A * 1,

A*/A * I m a.. but only A* is unbiased.

(v) the N-S-S (minimal sufficient statistic) for A is X(l) and

the fasily (Pa(A,ns0 )) indexed by A 1 0 is coplete.

Theorm 2.2. (One-prmeter, A A0 known)
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(1) The mSA of s is .

In X -a n A0

22
S as

(iii) (i) - )s for m I and V(;) a ( n2 for a > 2;
(rn-1) (0-2)

(Ov) The Ow of s is lgivenby s- (=.L)s ad V(.1)-

for a 2 2;

(v) Se0 h and l* ae consists.nt 49thtors of % but only s*

is mbiased; and

(vi) the P-S-S for is s (or so.

TheeM 2.3. (Two parsmaers. A, 9 both umnknm)

(1) The NU of (A.s) Is (,s) d ah

A -x(I) and a;

In X3  DID X(I)jet

* ii sod ; are indepeuuent, aA M) % X2~n)• 201-1)

2
(III) ( nsA fr as a V - sA for us' 2;

(iv) 2(S,) as fora2. 2, v( -( 2  for ;iS A-7 ~(n-2) (- )

(v) Ie WM of A is A*-a (as - 1X(l) for as>1 andItS
A 2  f

Y(A*.) nue~s-' for as>2;
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(vi) the MWe of s is s - and V(s) -

(vii) the N-S-S for (As) is (Ass).

he results of this section are suirized in Table 2.1 below. The last

colIn of this table yields the K-S-N (maximl statistical noise) for

varioI detection problem. A fotual definition of the N-S-N is given

in Section 4. As far as Table 2.1 is concerned, one should view the

N-S-N. V(4), as colemeta y to ad statistically independent of the

-S-S. S(W). Several versions of the N-S-R are given in Section 3.

3. Distribution heorw for Pareto .nesIM Processes

I this section one develops saw results which yield the K-S-S

(to be defined in Section 4) for various oe-saple and two-saple

problm.

Let XI, , ... , 1 be i.i.d. Pa(As) and let X(I) ' X(2) ...

(S) deuwte the order statistics of the X's.

Definition 3.1. One denotes by G-O-S(k) the distribution of the

order statistics induced by a uaden samle of si e k drawn from a

distribution G(.). Ihe following ma is fundmntal.

Laom 3.1. (IeqWI (19S3). "o'e (lWS)). Let E1. E2 9 be

..... . . . -0. I I I l M
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k
i.i.d. Ep(X). Then (5) k- ' . r(kMA), (i) -

k-i

ElC C2  1 c i
-111 ) - U-O-S(k- 1) where U(.) is the U(O1)

distribution. (iii) k( and are indeendent.

Remark. Not* that A has been eliminated in

*Les 3.2. Let nit q ,... q2" be Exp(A) - 0 - S(k). Define

n. .... , by kn l n;. , * k - 1)112 0 ... 1 * I

n* we

(i) ~% r(k,l) is the M-S-S for A;

(ii)n ° 5 U-O-S(k - 1);

(iMi) d n* we indepsden t.

lheorem 3.3. Let NO, X2 , ... , X* be i.i.d. Ps(A,s), then

' (t) (In X IAIn SM ... la- i.i.d. Exp(s);

(n A A' 'a A

(ii) (in X(I), in 1(2), ... , In X(n)) 1 - Exp(in As) - 0 - S(n);

(iii) (In !.-, Iis to ! EMi(s) - 0 SO);
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(i)~ A A A) p. (S__S wher % (s) is the

0 x_< 0

power distribution defined by H(x) s  0 x ' 1.

I x _)

1 I 1 1 5 S

Cv) l1 ... l-a l l rn U(O.A")-O-S(m).

Iv€) A1 5 A s A

Definition 3.2. Lot X1 * X2. .... bn b i.l.d. f(A.s). [The

followianrmg d vsriableE 1 r a - 1 ill be used

femtly throusoue the ret of th. pper and me mtined in

Table 2.1.1

(1) ~ = <r<x
-I -I T-r IInr

r-l

(Iii) E1 - (a O- 1- ) Imcxa r). r a - I.

Jul

Tho following theorem is m *ay cousequmce of amis 3.1 aid 3.2.

T1  T2 r ~-s.-t
Th o e .4. ( ) T 3, 1-, -..

3.o 1 I)*

r. nd is ineenMof r(a~s);
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(it) V2 0n-2 6 ...- O-S(n -2) and is
% Ui1nni

ind endent of % r(o - is);

El E2 En-2
(ti) EsE 2  - U-O-S(n -2) and is

n-I "n.2 ft-I

independent of Ea.1 % r(a - 1..).

The following theorem contains various versions of the H-S-V (iee

Definition 4.1) 'Ams A Is unknow. The' will be used in the Kotwoaorov-

Suiunov statistics for the oe-sawle case in Section 6.

I eorm 3.S. (I) (in 1 ].O In[ ] ... Ex ) p(s)-

O-S( - 1). (ii) ( .... Its) )- Pa(Is)O-S - I);

(ill) (I'a ) [ **.... 1j ), U-0-S(a - I);

I (m-)s i111(*-2)s ,x(-Iv,
(iv) ] , * " I.i.d. U(0,);

, (v) ( In , , (a - 1)1* in f .... in [f }l i.I.d, Ix(,).

Deflaitloo 3.3. For I a -, one defles

S(I) vj In[ It (11) u I I (tit) wf | nI}-

• " " Xca--l),

(i Y, 9 ()Z (nil Inj .)1

ley will be used throughout the rest of the paper.

0 ...- i,'m'=~=l lb iH ie H aKm
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The final legn for this section deals with a two-sample situation.

iam 3.6. Lot x19 x2 - -", x. Y1 ' Y2, ... , Yn be independent with
U-i X +1i

x % Pa(Aans2). Let n U In X(i),
i-i

Sn-] t *1

2 . E In[4jjl, ,, then (I) X(l), Y(l), it n 2  are independent;
Jul

(Hl) X(I) % P*CAI , as)I Y(1M PS(A 2,ns 2) ni nI P_ r~m -lsl1),

n r(n- ,,v(iv) 2 i lo n ) an 2n2 In Y are i.i.d.

and 2s nA
xi EVj(II2); (v sI 2a2& s2n2 2 2 and 2sInI+s2 2A

xsrt 2~ whent xN asn 25n;7an
2

(N-2) . in X-) - s In

(vi) 2 i2 . P(2, 2N-4).

29ln 1 t 2s 2n2

Remuk. Lmi 3.6 (vi) is Useful when a a n because if A - A2

and sI 1 s2 then the expression on th. left does not involve A nor s.

(Se. Section 7.)

The results of this section are sumiarized in Table 3.1 below.

4. Dmic Statistical Concepts

(A) T.e SDT (Basic Data Transformation) and SN (NALmal Statistical

r!sJ

S . . a mmm emI mM r
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Let the generic data point be denoted by Z (X1 , •..,Xn) in the

one-sample cases and by Z a (X1 , ... , X,, YI, "''' Yn) - (ZI' ""' ZN)

in the two-sample cases; and let S(Z) denote the M-S-S.

Definition 4.1. Let N(Z) be a (vector-valued) statistic independ-
9',

ent of S(Z) and such that 6(Z) [S(Z), N(Z)] is 1-1 a.e. Then,
",

(i) 6(') is called the BDT; and (ii) AI(Z) is called the M-S-N.

It is known that S(Z) contains all relevant information about the

parameter (vector); and it will be seen that N(Z) contains all relevant

information about the structure of the process. From 6() - (Z),

N(Z)], one should almost. always be able to reconstruct the original

data, Z.,,

Example 4.1. (i) In Lemma 3.1, S(E) - kt; N(E) - E, and

6(%) = [k , *] is the BDT. From tC(), one can reconstruct .

(ii) In Lemma 3.2, SQ) - T and N) = n**. Hence 6(n) - {, k**).

From the examples above, it should be clear that there are several

possible versions of the -S-S and M-S-N.

Remark. The importance of these concepts is that as a rule of thumb

in a goodness-of-fit problem, the decision rule should involve

only the M-S-S while in a class-fit problem, the decision rule should

only involve M-S-N. This will be seen in the sequel.

(B) Distribution-free-ness.

a There are two types of distribution free statistics that arise

in detection procedures.
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Definition 4.2. (i) A statistic TCZ) is called nonparametric

distribution free (NPDF) with respect to a family Q* of stochastic

process laws if there exists a single distribution Q(-) such that

P{T(Z) < tIL} - Q(t) for all L e fl*,

(ii) A family of statistics, {TI(Z; L)} indexed by the members

L E n* is called parametric distribution free (PDF) with respect to

fl* if there exists a distribution function Q1(.) such that,

P{T (Z; L) .< t) - Ql(t) for all L e fl*.

It is clear that each NPDF statistic is PDF.

Example 4.2. Let n*- I(PRP), and Z - (Zl , ... , ZN) be the
first N interarrival times with Z xj for I < J.1 m, and

Zm+r =Yr for < r < n, where N _m+ n. Let sl and s be

the MLE's given by Theorem 2.2; T1 = and T2 * 2 Then, T

is NPDF wrt fl* with Q - F(2m, 2n); and T2  is PDF wrt fl*
2

with Q1 X2m Furthermore, it can be shown that T is a function

of the Z only through the M-S-N, N(Z); and T2  is a function of%2

X- (X1, ... , X) only through the M-S-S, S(X).

The M-S-N for the respective cases are given in Table 2.1. The

relations between the M-S-S, M-S-N and DF statistics is best given

by the following theorem.

bi:

_. t.

m • m~ili iliaa .. . .. .. .
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Theorem 4.1. Let Q* be a family of cdfs admitting a M-S-S, S(Z),

for data Z* (Z1, ... o Z). Then, (i) T(*,Z)- *(N(Z)J is NPnF

vrt Q* for each (measurable) function 4(.); and

(it) T*(4i, G, S(Z)) u *G, ,(Z)], when Z is governed by G, is
Iu

PDF wrt n* for each (measurable) function s'(').

S. The K-S (Kolmosorov-Suirnov), Lilliefors and Srinivasan Statistics

(A) Kolmogorov's Original Statistic

Kolmogorov (1933) introduced the K-S statistic D n(F O)

suplF (z)- Fo(z)l, for continuous cdfs Foe') and empirical cdfs

Fn(.), where Fn(z) l € (z-X 3 ) " C(z-X(M)), and
n n

C(u)= if u>O; and = 0 if u < O.

Definition 5.1. If XI, ... , Xn  are i.i.d. FO , continuous, then

Dn(Fo) u K-S(n).

In order to apply the K-S statistic directly, one must know

F 0O(.) completely. However, in many signal detection problem, F0 (.)

is known only up to a nuisance parameter, or, equivalently is known only

to be a member of a specific (parametric) family. Lilliefors (1967, 1969),

Srinivasan (1970), and Choi (1980) introduced modified versions of the

K-S statistic for such situations.

(B) Lilliefors-type Statistics
4
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Let fQe {F(O;.): e & be a family of cdfs admitting a

4LE, e a 6(x1  ... x), for e.

Definition S.2. (1) F(') is the cdf satisfying F(z) * F(6;z)

for all z; and

(ii) 6 n suplFn(z) - F(z)I.
z

Lilliefors (1967, 1969) calculated Monte Carlo tables for Dn in

the normal and exponential cases, while Y. Choi (1980) has given such a

table in the uniform case.

Srinivasan (1970) replaces P(.) with the Rao-Blackwell estimate

of F(e;-) in the Lilliefors statistic.

(C) Srinivasan-type Statistics

Consider a family fl* a {F(O;.): e c ) of cdfs admitting

"IIa M-S-S, S(Z) for 0.

Definition 5.3. Ci) F(z) - P{W _< zISC.Z)}; and

(ii) Dn - suPIFn(Z) - (z)j.
z

Srinivasan (1970) computed critical values of Dn by (Monte Carlo)

simulation for the exponential and normal families. Some of his nuerical

results however were in error, as was pointed out by Schafer, Finkelstein

and Collins (1972).

Remark. These three statistics are in many cases, asymptotically

equivalent. Calculations of Fn(z) for the case when A is unknown,

s 0 so known and the case when both A and s are unknown are presented

in Appendix A. These statistics are summarized in Table S.1.
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One can now treat the detection problem.

6. One-Sap1e Detection Procedures.

In this section, one will derive detectors for deciding between PW

and the alternative N * S (noise plus signal). The data set will be

denoted by Z a (Xi, X2 . ... , X,) and a is the PFA. There are

altogether 8 problem considered. The first 4 deal with the

cases when at least one of A and s is known and the last 4 con-

cern cases in which both A and s are unknown. Muerical examles

for each case are provided in the Appendix 9, where they are numbered

the same as the cases they illustrate. The results in this section are

sumsrized in Table 6.1 at the end of this section.

Case 6.1. (A unknown, s a so  known, L(A,s O) 0 Q(PRP))

PW: A-A O  vs. --+ S:

The minima PDF proceduwe is to decide N + S if and only if
-1/na0

00
1 X(I) < A0 or -X(l) > bA0 where b a a ."Equivalently, one can

use the statistic

T -2ns 0 In A
0 A
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which has a distribution under PN. Note that the procedure is based

solely on the H-S-S for A, which is A m X(l). The one-sided

detection procedure for PH: A < A0  vs. N * S: A A0  may be

formulated similarly.

Case 6.2. (A unknown, s a so  known; class-fit roblem)

PM: L(As 0 ) c Q(PRP) vs. N +.S: L(A,s0) fl(PRP).

One employs the K-S statistic with size n - I (K-S(n - I))

through anyone of the four versions of N-S-N, (Vj } (U 1 , (V 1 , (YJ)

given in Theorm 3.S and. Definition 3.3. Explicitely, they are

(1) n (z -(
"

I - )

a Z O n. Jul
D ,(2) supl .nI C (z-U 0)- - )n O z tl Jul

n-I e(Z- ) &Ia O<Z<l U- olW_

O(C<l Jol

where D , % -(n - l) for i a 1, 2, 3, 4. Therefore one decides

N + S if and only if D(i) > d' where d' is an appropriate critical
n

value from the K-S(n - 1) distribution.

Alternatively, one may use the Srinivasan-tye statistic (see Table

as follows.



S u l l ( l I n u 0 .

4 (2

Srinivasm-typ .statistic in this case.

Case 6.3. (A a A0 known. s unknown. L(AoS) e £R(PRP))

PM: s 0 vs. .S: s 0

Th N-S-S for s is Son( In and the statistic X(J) is

T a 2s inL 4n under P4. Thus the detection procedure is

decide N * 5 if and only if T' Xo nl 2 ) or T C X 2

Note that T depends on Z only through s. The one-sided vrocedure

for PN: s < s0  vs. N +_S: s ' so my be formulated similarly.

Case 6.4. (A a A0 known, s unknown; class-fit oroblem)

PU: L(,s) c a(PRP) vs. N +_: L(%.s) 4 Q(PRP).

Again we should me the K-S statistic with the N-S-N which

according to Table 2.1 Is { - " U-O-S(n - ).

n n n

Thulet 0 c(z- -t( and one decidesOn 0<<z jU l
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N * S if and only if D o d" where d' is the appropriate critical

value from the K-S(n - 1) table.

Case 6.S. (A. s both unknown. L(As) c Q(PRP); Goodness-of-fit test)

PM: L(As) a L(Ao.sO ) vs. N # S: L(A.s) ii L(Aos 0 )

From Theorm 3.3 (vi) and under Pie situation,

A0  so Ao so AD
fIx-CUJ , iTC' O . .... (jy-yy**3 0) %u-0-s(a).

The statistic is (as in Case 6.3).

T lo ! and the decision

rule is decide N. 3If end only it T or T'X

Cue 6.6. (A and s ankmow, L(A,s) c O(PRP))

: vs. N - 3: 5 0

The detection statistic here should only involve the N-S-S

5M a eson[! Infj for 9.:J-l

2she decision rule is: Decide NI # S i ff C h" C

is the (lOO)th percentile of the X(2n,2 )-distribution.

One notes that if Yj * In X, then the Y's are i.i.d. T-exp

o (In A,s). Park and U. Choi (1978) derive the minimm PFD one-sided



procedures for the shape parameter s. It will be shown in Appendix

A.3, that the Park-Choi decision rule is equivalent to the one given

above.

For the two-sided detection problem: P: s U s0 vs. N + S:

s 0 so * the decision rule follows from that above.

Case 6.7. (A, s unknown; L(As) C SI(PRP))

P A A vs. N.S: A>A 0

One should employ the M-S-S, (A, s), and the statistic

T(Z, A) - n(n - Iln 1(0) - In Al " F(2, 2n - 2).

In X- n In X(l)

7he decision rule is: Decide N. S 1ff X(I) > A0  and T(Z, AO) > fl,

wher f, is the 100(1 - *)th percentile of the F(2, 2n - 2)-

dis tribut ion.

Again, as in Case 6.6, Park and II. Choi (1978) give a minimum POF

procedure for the truncated exponential case, which is equivalent to

the decision rule above.

Case 6.8. (A, s unknown; class-fit problem)

PM: L(As) C Q(PRP) vs. N + S: L(A,s) k f(PRP).

One can use the Kolmogorov-Smirnov, Lilliefors or Srinivasan-type
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statistics. From Theorem 3.4, one finds

D~'1)su IjJ n-2n U - ! (z- -z
O<z<i i-i n-i

D(2) u 1 n-2 _.n SUP n-2 ! (z - ) - :1,

O<z<l Jl n-i

then DMi) K-S(n - 2) for i - 1, 2. The decsion rule is decidei; N + S if and only if 0(i)> d' where d' is the critical value from
n

n

the K-S(n- 2) table.

One now considers the Srinivasan statistic. From Table S.1, one has

0 - sup IF nCZ) - Fn(z)I

I n z n-. so z n-I
sup can/s' £ (X(l ) (-U ("ni@.)I - In- -

lXCI) I)

where A - X(I) - a, S s'. Let v a -- , V(J) - X(1) e
XMl XMl Te

n-I n- nan s < < * ( [  £ (v - V(J))-I * (-1-(1 - in vln " I
n ~~ n/si nJul v V())- =n) n

- sup ens, I ! en- tinyv- in v())1-(.i * n- I- lnv in y I.1
I <v e Jul

n n

Let u - In v, U(J) in V(J), then since s -nI

i In V (n-l)u

Jul J
ehsn-I n-I s n-i0 -- ) su 'L----  £Cu U(J))- (I- Il

one hasT. D "= 'n-I I C (U m.('-,1 O/n " 0 < u < nls' n-Jl
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n-I n-I
sIup t-I ! e(u UU ) 1 1 J I

0 < u < (n-l)i j-l (n-l)u

*(fl-..) sup -I v-j- Z e cu - IJ~j)) - Ci -[1 -$u I n-I u in-l}!
n 0 < u < n I Uj - !IC( ~ [I{- n-1)u

ijl n-lj

Jul

The critical values of this statistic cannot be obtained from the

known existing tables. They may be obtained by the Monte Carlo simulation

method for various sample sizes and PFA

T hese statistics are summarized in Table 6.1.

7. Two-Saiples Detection Procedures

The data set here is Z - (XY) = (X1, ..., X, 1 "". Y)

(Z1, Z2, ... , ZN) where N - a + n. Here XY are two independent

random samples from Pa(Al, sI)  and Pa(A 2, S2)  respectively. The

letter a will denote the PFA. As in the one-sample case, numerical

examples are given for each case in Appendix B with the same order

and numberings as they are presented here.

Case 7.1. (A1, A2 known, Sl, s2 unknown)

PN: s1 a s2 vs. N S: s1  s2

The M-S-S for Csl s 0 is ( , I [m ln( - ,n[ I ln( 1 )] 1)
j A1  j-1 A2

0-- . . .i'd-. l ii li i m nm
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m X.
n In Aandundr P, T = j=l A1

and under PN, T* n. F(2m, 2n). Therefore,

j=l A2

decide N + S if and only if T > f' or T < f" where f' and f"

are the appropriate percentiles of the F(2m, 2n)-distribution.

An important point arises in Case 7.1 above. The detection

statistic T* involved the M-S-S i s2) for (si, s2), the

unknown parameter pair. However, the remark following Example 4.1,

and the cases of Section 6, suggest that for Case 7.1, one should employ

the M-S-N, since the particular values of si, and s2 are not
pertinent h . This, indeed, i ecase, as will be seen
priethere. Tindeis the csawilbsenfrom the

derivation to follow.

One can directly verify (from Lemma 3.1)

Z. Z.
Theorem 7.1. Let W. = In - for 1 < j.< m; and In J- for

j A1  - - A2

r N -1
m + 1 < j < N; and Vr = [ W.] [Q Wj] for 1 < r < N - 1. Then

1 1

(i) (W1 , ., WN) are i.i.d. Exp(s).

(ii) (VI, ... , VN_) is the M-S-N; and is A U-O-S(N - 1). Further,

V
n miii) T m 1-V

m

This means that T* is a function of the data, Z, solely via the

M-S-N of the combined sample. Hence, T* is both a function of the
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tM-S-S's for the individual samples and the M-S-N of the combined

samples.

The one-sided detection problems may be handled analogously.

Case 7.2. (A1, A2  unknown, sl, s2 known)

PN: A = A2  vs. N + S: A A
: A

In this case, the M-S-S for (A1, A2) is (A1, A2) = (X(1), Y(1)).

X1) Y (1)
Since (nCA-l %, Exp(msl), In(A % Exp(ns2), one has by Lemma 3.6

A 1 1A22
the following,

Lemma 7.2. Let T = 1n(j1). Then under PN, the distribution

of T is given by

ns 1 -ns2t(1 - + s) e t>O0(ml +-n

H(t) =
ns2  ms1 t

(msI + ns2) e t<0

The proof of this lemma is given in Appendix A. Thus the decision rule

is: Decide N + S if and only if T > C1  or T < C2 where CI, C2

are determined by H(C ) - 1 - a, and H(C ) =

In the spe.cial case where s1 = s2 = so  is known, the decision

rule reduces to: Decide N + S iff Y~)< b1  or > b where
1 1 X(I 1 2

Na ms0 Na -ns 0bi (I and b a1 n n m
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One further notes that XS nu U(0,e) with = As. For this

uniform case, Y. Choi, Bell, Ahmad and Park (1982) present a detection

procedure which coincides with the special case above.

Case 7.3. (A1 = A2 = A, unknown; sl, s 2 unknown)

PN: s I = s2 VS. N + S: s 1  s 2

! One first attempts to base the decision rule on the theorem below.

Theorem 7.3. Let X1, ... Xn Y1, ... ' Y be i.i.d. P(A,s).
n n-nl-1 in ___n n-1~ jl

Then (i) X(I), Y(l), T 1 = X(j+I) and = In Y(1)
j =1 j=l

are independent; with

(ii) 2nstln X(l) - In Y(l)1 1 X ; and

d 2(iii) 2.sni1  = 2sn 2  -' X2n 2

The decision rule for this case, with m = n, would then be:

Decide N + S iff

2nslnI - n=l InI - n21 > C

2nsIlnX(l)-lnY(1)1 Iln X(l)-lnY(1)1

However, the cdf of Q is not known, and, hence one seeks other approaches.

Beg (1980) derives a uniformly minimum PFD procedure for the case:

PN: s I < 2 vs. N + S: s I > s 2

in the truncated-exponential case, which applies to the Pareto nroblem
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at hand even when m 0 n.
m n

Let n and n2 be as above; n = in X. + I In Y. - NW,
1 2 j=1 

where N = n + m and W = minin X(1), In Y(1)}. Beg proves

Lemma 7.4. The conditional density of ni, given W and n, is

m-2 n-i(m+n-2)n 1 (- n - n1)n -

h(nllwn) = (m-2)!(nl) - for 0 < n<

The decision rule based on this lemma becomes: Decide N + S iff

ii n< c = c(w,n)) where Jc hOn,w, TOO)drj1

If one performs the actual integration, it is easily seen that C

satisfies the relation c = c'z where Ic, (m - 1, n) = 1 - o,

Ic(m,n) = I y0 M11_y)n-1 d
= B(e,n) 1 m'(o - dy

is the incomplete Beta-function. A table for the incomplete Beta

function has been tabulated by K. Pearson (1934).

Case 7.4. (Al, A 2  unknown, s 1 = s 2 = s unknown)

PN: AI1 < A2  vs. N + S: AI > A2

Let TI1 n 2 W, n be as defined in Case 7.3. Let N m + n,
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M if X* -M

h(x*lw,n) N

______ - if w < x* < w + n

and define the number c a c(w, n) by

JW m h(x*lw,n)dx* 
- L.

From the result of Beg (1980), the decision rule is decide N + S

if and only if in X(1) > c. The number c may be found by performing

the actual integration in. which case one gets
1

c = * w where c' = 1 - ("D
n

N

Remark: Suppose m n • , then Lemma 3.6 (vi) may be used

to test PNN: s I  s 2 vs. N +S: s I s 2 in Case 7.3 and to test

PN: AI a A2 vs. N .+S: AI 0 A2 in Case 7.4. In both cases, under

PN, the statistic

T a (N-2)NIln X(1) - in Y(1)I " F(2, 2N - 4).4(nl + n2)

The decision rule is decide N + S if and only if T > V where f

is the appropriate percentile of the F(2, 2N - 4)-distribution.

Case 7.5. (A1, A2 , SIP s 2 all unknown)

PN: s1  s2 vs. N + S: s 0 s

1
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Let n [ in xlklT- n -i Y[

J-1 Y(1)

then from Lemma 3.6 (iii), under PN,

(n- 1)nIT - (m- ln 1-, F (2(m - 1) , 2 (n - 1).

The decision rule is decide N + S if and only if T > f or T < i

where f' and f" are appropriate percentiles of the F(2m - 2, 2n - 2)-

distribution.

Case 7.6. (A i, A2, si s2  all unknown)

PN: A -A vs. N +_S: AA1 A2A 1  A

This detection procedure does not appear to have an elementary

solution. One may try to apply the likelihood-ratio test. One has when not

assuming AI  A2,

m-1 -0l)I

A -Xi, Sm[[ L in X
j 1ul

n-1 ,. -1

A 2  xYM) s2 n( n in YQI)-

Under PN, one has

A*- min {X (1), Y(1)) Z(1) and

! i n-i [1 , - n-i In
j-1 j-l

rJ-
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•therefore the likelihood ratio is

(s4n 2 n n (s- )-2 ,Y SO [ 2 2 if Z(1) - X(l) < Y(l)
°2 X(l) 2

LOSl m XM I l am (ss1
:) -x 1-0s. [ F Xif ZCI) - Y(l) < X(l)

I~ 1M
YI (1) I J= x~]

The distribution of L I/1o is complex and the above expression resembles

in structure that of the Behrens-Fisher problem.

Case 7.7. (A1, A2, sit s2  all unknown)

PN: (A1 , s I (A2, s21  vs. N + S: (A1, s11 ) (A2, s2)

The decision rule consists of 2 steps, first deciding whether

-1  s2 and then if one decides sI * s2  one tries to decide whether

A A2. The procedure is a combination of Cases 7.5 and 7.4.
M -1 X + 1n -I

Let 111- in I n2 J1z I In! fY then
jul i-l

under PN, T- (-l)n 2  "t F(2(m - 1), 2(n - 1)).

The decision rule is:

(i) Decide N + S if

T >f ~C o .r T <f
(2(m-l),2(n-l)l-*/4) I (2(m-l),2(n-l),i/4) - 2
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(ii) If C2 <T < C,, then decide N S if and only if

In X(1) > C3 and In Y(I) > C4 where C3  4 C

a n

1 1
c - 1 - (Nc)N-2 .- - i.N-2 N-u.n.

Table 7.1 sumarizes these procedures.
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APPENDIX A: Proofs 1 - X 0 > X(1)

A.i: A unknown, s =s 0 known, then F (Z)
0 n

0 z < X(1).

Proof. Fn(z) ={ E{lX < =)SIP P{X1 <zIX(l)}

n P{X. < zjX(1)}

+ j.1 
i

1 1n-i

n njjl P X(H) = 1. from Theorem 3.5 (ii)

No e ~) X(1~) ,then {U(l), U3(2), .. ,U(n-l)} ^U Pa~i, s0 )

O-S(n-1)

1 n-i n-i
Therefore F (Z) + ~ ~( ~j< Z

n n n n-i j= -XI

n-1
-) P{uX)

S'

= 1-i Uf1)X1. 0
ni z



0 z <a

1 -
A.2. A, s both unknown, then F(z) =n- i n a /

1- z-(--~ a<ae
n n a

1 z ae n/s

where A a, s s.

Proof. F (Z) =E{lix <z ZjS(Z)l P{X < zt(A, s))

n1--

1 n-

+ u P{X(j4.1) :S ZI (AX ). z > a

Let 11(j) =,V(j) l n 11(j), then by Theorem 3.5,

((1), U1(2), .. ,t(n -1)) ~ Pa~l, s)-O-S(n - 1) and

(V(1), V(2), .. ,V(n -1)1} Exp(s)-O-S(n -1).

Hence F(Z) + 1 j! P{U(j) < -]sl

n n n jl -

n-i V

n j-1 a-

n-1V

A n f
4since Sss n--n-I (n4l)V

v-
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V V + V
By Lemma 3.1, { 11 2 , ... U-O-S(n- 1). To

(n-1)V (n-l)V

continue,

1 n-i V 1
F (Z) =- + 1p{ < Sn A
n n n (n-l)V n a

(1- (11i) P{> n
(n-1)V -n a

S= 1- ( , [I - I n n-I

n n a

In the above derivation, since V. < (n - 1)V = _ for every j, one---

may restrict z to ln _<R or z<aen/s.

A.3. One verifies here that the u.m.p. procedure found by Park and

U. Choi (1978) is equivalent to that in Cases 6.6 and 6.7. Park and

Choi considered the p.d.f. of the truncated exponential,

f(x,X,V) a e I (x) 0 < V, X <

where X,v are unknown. Let YI. Y Y be random sample from

a truncated exponential distribution. Let S = Yi, then given
i=1

Y(l) =,

An-1(s-ny)
n - 2 e X ( s n y )

f(s [y) I r(n-1) (ny,-)(s) (1)

while given S = s,
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f (yls) =n(n - 1)(s - I (y). (2)f"yjs) = - (s - nv)n 1  (v's/n)

Theorem A. (Park and U. Choi). For testing hypothesis HB: v < v

against K : v > v0t the u.m.p. unbiased test is given by
V

{ 1 if Y(l) > C(s)

0 if Y(l) < C(s)

where C(s) is uniquely determined by P{Y(l) > C(s)IS = s, v = V0 } = a.

Theorem B. (Pak and U. Choi). For testing hypothesis H: x < A

against, KX: X > XO, the u.m.p. unbiased test is given by

I if S < C(Y(1))
• *(S) -

' 0 if S > C(Y(l))

where C(Y(l)) is uniquely determined by P{S < C(Y(1))IY(1) = y, x = x } = a

From Theorem A and (2), one concludes C = C(S) is determined by

Sn(n - ) 1. F (s -ny)n-2 dy - (n - ) (1 - 2 du

n-i rJC
(s-nvo) C

,-, n(Y(1)- O

where U= S - v0  " B(l, n - 1). ButS -nv 0

U n(Y(l) - v0) T T,
U = S-nY(1)+nY(l)-nv0  I1+ T where T' = (n- )T,

I
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T is the statistic given in Section 6, Case 6.7. Since the function

ti
f(t') = +t is strictly increasing for t' > 0, the two tests are

equivalent. It is also easily verified that if U n B(l, n - 1),

then n V F(2, 2(n - 1)). The proof of the equivalence between

Theorem B and the test procedure in Case 6.6 follows from (1) in

the same manner and will be omitted.

A.4. (Proof of Lemma 7.1). From the hypothesis, let U = InY(l),

V = In X() and T = U - V, then

P{T < t}= P{U.- V < t1

= FP{U < v + t}(msI)e dv

-ns2 (v+t) -Ins lv
=ms, [ - e ]e dv.

max(-t,0)

Considering separately the case t > 0 and t < 0, the above integral

can be evaluated and equals to H(t) given in Lemma 7.2.
$"
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APPENDIX B.: Numerical Examples

The numerical examples correspond to the various techniques

developed in the main body of the report, and have corresponding numbers.

The data is divided into three sets.

Table 1. This consists of simulated interarrival times from

Pa(1;1); Pa(2;1); Pa(3;1); and Pa(S;5) distributions.

Table 2. This consists of simulated interarrival times from

Pa(1;2); Pa(1;5); Pa(2;2); and Pa(5;2) distributions.

Table 3. This consists of real data related to 24 complete

heart-beat cycles. [Special attention will be paid to the waiting

times for the "R-peaks". See sketch below the table.]
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TABLE 3 EKG-Data (Heart Beat Cycles) - 52 -

MAGNITUDE TIMLS ______Cycle - Cycle

p Q R T P QR Length'

N .0927 .0708 1.190 .4785 148 428 467! 73
----- 1014

2 .1005 .0917 1.203 .434U 1,193 1,440 1,484 1,758
- - -- -1014

3 .1121 .0982 1.212 .4316 1,897 2,378 2,498 2,884

4 .1238 .0608 1.297 .5652 3,452 3,521 3,558 3,835 1040

1041

5 .0819 .0206 1.261 .5060 4,108 4,559 4,599 4,812 1041

1056
6 .0769 .0764 1.284 .47C7 5,346 5,618 5,655 S.923
7 .081S .0507 1.2281.47C0 6,346 6,689 6,733 7,005 1078

1073
6 .1263 .1113 1.166 .4240 7,596 7,756 7,806 8,085

1076

9 .1009 .0817 1.274 .4542 8,645 8,840 8,882 9,154

1089

10 .0839 .0601 1.239 .4663 9,694 9,935 9,971 10,250

1044

11 .1126 .0907 1.164 .44E2 10,727 10 985 11,015 11,301-- 1044

- -1012

12 .0939 .0894 1.189 •4554 11,833 11,985 12,027 12,300
1028

.0929 .0648 1.278 .4778 12,876 13,017 13,055 13,331 1038

14 .1010 .0555 1.213 .4742 13,758 14,050 14,093 14,367
_____ a1062

15 .0560 .0374 1.235 .4874 14,307 15,112 15,153 15,429~1063

16 .0832 .0899 1.294 .4268 16,007 16,179 16,216 16,495
1083

17 .1278 .0939 1.294 .4465 17,053 17,265 17,299 17,587
1063

18 .1044 .0585 1.255 .5001 18,255 18,325 18,362 18 360
1018

19 .1184 .0702 1.250 .4491 19,286 19,345 19,380 19,655 1013

20 .1142 .1141 1.266 .4105 20,203 20,345 20,393 20,665

947

21 .1338 .1140 1.228 .4052 21,103 21,297 21,340 21,612 947

891
22 .1331 .1050 1.230 .44C5 22,035 22,195 22,231 22,495

- -- 911
23 .0849 .0584 1.127 .4265 23,068 23,097 23,140 23,415

901

24 .0916 .0807 1.156 .4038 23,825124,002 24,041 24,308

25 .1442 .1323 1.260 -- 24,766 24,937 24,988 --

K__
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Example 6.1: A unknown, s = s0  known, L(A,s0) C S(PRP)

PN: A -A0  vs. N + S: A i A0.

Detector Statistics: i) X(l) or

(ii) T - 2ns In X ' X2
0 A

Decision Rule: Decide N + S iff

-l/ns
(i) X(l) < A0  or X(l) > bA0 , b u CIn0

(ii) T < 0 or T > X2

Decision rule (i), the MP procedure, will he illustrated using

the following PN situation:

PN: A a 2 vs. N + S: A 0 2 (s known, C .01)

Data Sets: (See Tables 1 and 2)

1. Vi a ... , Vso i.i.d. Pa(1;1)

2. N1 , ..., N 0  i.i.d. Pa(2;1)

3. X1, ..., X50  i.i.d. Pa(3;l)

4. Yl' -P' Yso i.i.d. Pa(2;2)

S. Zi, ,.., Z50  i.i.d. Pa(l;S)

The Decision Rules are:

1. Decide N + S iff V(l) < 2 or V(1) > 2.193. Since V(1) = 1.010

one decides N + S.

2. Decide N + S iff W(l) < 2 or W(l) > 2.193. Since W(l) u 2.033

one decides PN.
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3. Decide N + S iff X(1) < 2 or X(1) > 2.193. Since X(1) 3 3.001

one decides N + S.

4. Decide N + S iff Y(I) < 2 or Y(1) > 2.094. Since Y(1) = 2.044

one decides PN.

S. Decide N + S iff Z(1) < 2 or Z(l) > 2.037. Since Z(1) = 1.008

one decides N + S.

Example 6.2: A unknown, s a s 0 known

PN: L(A,s0 ) c Q(PRP) vs. N + S: L(A,s0 )t Q(PRP)

Detector Statistics: Foor Kolmogorov-Smirnov statistics

(DO ) D( 2 ) D (3) D (4)) and a Srinivasan-type statistic (D) are
n n n n n

available.

Decision Rules: (1-4) Decide N + S iff Dn > d where

d n_l, is value from Kolmogorov-Smirnov table and D n D n D n

(3) ()% n-l1
n S n  nnl,c

Data Sets: (see Tables 1 and 2)
1. Xl, ...,'X so i.i.d, Pa(1;2)

2. Y1 2 ... Yso i.i.d. Pa(S;5)
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critical
value statistic statistic
(a=.O1) value (X) decide valus (Y) decide

D(I) 0.237 0.032 PN 0.109 PN50

D(2)  0.233 0.032 PN 0.109 PN50

D(3) 0.233 0.103 PN 0.064 PN
so

D(4) 0.233 0.099 PN 0.05S PNso

D 0.228 0.031 PN 0.107 PN

Example 6.3: A = A0  known, s unknown, L(A0 ,s) Q(PRP)

PN: s = s0  vs. N + S: s 0 s0

Detector Statistic: T a 2s0  I ln X(j) ) X
j=l AO 2n

Decision Rule: Decide N + S iff

T > X2  or T < X2

2n,1-a/2 2n,a/2

Test the following PN situation using generated Pareto data:

PN: s - 2 vs. N + S: s 2 (A known, a = .01)

Data Sets: (see Tables I and 2)



-56 -

1. X1, ... , X i.i.d. Pa(1;2)

2. YIP ""' s i.i.d. Pa(5;5)

Decision Rule: Decide N + S iff T > 140.2 or T < 82.4

From data set 1: T = 91.017, so one decides PN.

From data set 2: T = 48.737, so one decides N + S.

Example 6.4: A = A0  known, s unknown

PN: L(A0,s) C g(PRP) vs. N + S: L(A0 ,s) Q ?(PRP)

n-I T.
Detector Statistic: D* sup C (U- I) -U(

. n 0<u<1 I n

r X.
where Tr ln(-)

r j=1 A0

Decision Rule: Decide N + S iff D* > d where d
n n-1,c n-1,c

is appropriate value from Kolmogorov-Smirnov table.

Data Sets: (see Tables 1 and 2)

1. X1, ..., X50  i.i.d. Pa(1;2)
2. YI.0 ""'J Y5so i.i.d. Pa(S;5)

Decide N + S iff D*0 > .233Since D 0(~) = 0.101, one decides PN.

Since D*o(Y) = 0.053, one decides PN.

....~ ~ ~ ~ ~~5 A"' ----- -,----w mmmm aO i' .. ..
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Example 6.5. A unknown, s unknown, L(A,s) E Q(PRP).

PN: L(A,s) L(A0 ,s 0 ) vs. N + s: L(A,s) A L(A0 ,s 0 )

n A So
Detector Statistic T = -2 I ln[-] X

j=l I 2n

Decision Rule: Decide N + S iff

2 2
T> X or T < X

2n,lI-aj/2 T2n,a/2

Test the following PN situation using generated Pareto data:

PN: (A,s) = (1,2) vs. N + S: (A,s) # (1,2)

Data Set: (see Table 2)

1. X1 , ..., X50  i.i.d. Pa(1;2)

Decide N + S iff T > 140.2 or T < 82.4

Since the calculated value of the test statistic is T = 91.02, one

decides PN.

Example 6.6. A unknown s unknown, L(A,s) c Q(PRP)

PN: s < s o  vs. N + s: s > s o

n 2

Detector Statistic: T - 2s O [ 1 In X. - n In X(l)] "% X23- 2n-2,a

Decision Rule: Decide N + S iff T < X2
2n-2,.

o%- -° " " , , . • -. .,W
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Test the following PN situation using generated Pareto data:

PN: s < 3 vs. N + S: s > 3 (C = .05)

Data Sets: (see Tables 1 and 2)

1. XI, ..., X50  i.i.d. Pa(l;2)

2. YI' ..., Y50  i.i.d. Pa(S;S)

The critical value is x 76.5(98,.05)

The calculated statistic values are

From data set 1: T = 129.32, so one decides PN.

From data set 2: T - 72.64, so one decides N + S.

Example 6.7. A unknown, s unknown L(A,s) C n(PRP)

PN: A<A o . vs. N +S: A>A o

Detector Statistic: T n(n-1) (In X(1) - In A0 ] F
n (2 ,2n-2)
1In X. n In Xl)

Decision Rule: Decide N + S iff

i. X(l) > A. and

ii. T > f

Test the following PN situation using generated Pareto data:

PN: A < 3 vs. N S: A > 34i
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Data Sets: (see Tables I and 2)

S1. X1, ... X so i.i.d. Pa(1;2)

2. YI ... Y0  i.i.d. Pa(S;S)

The critical value for T (a = .01) is

f (2,98,.99) 4.87

Since X(1) = 1.024, one decides PN for data set 1.

Since Y(l) = 5.006, and Ty = 103.7, one decides N + S for Data

Set 2.

Example 6.8. A, s unknown

PN: L(A,s) e f(PRP) vs. N + S: L(A,s) g (PRP)

Detector Statistics:

i. D UP C (z- - zI K-S(n-2)

n2z j=l n-1

n n-2 E.
z J-1 n-

where r-l
XU+l) X(r+l)

jul In + (n- r)ln[ X(1) 1 < r < n - 1

and
r .
r jX(J + 1)E r (n + I -J) In( X(J) I I < r< n-1
Jul

. .----..-.. .,.,. .. .. "i .ii i
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Decision Rules: Decide N + S iff

i. D1 >d
D n (n-2,a)

2ii. D2 > d
n (n-2,a)

where d(n - 2,a) is appropriate value from Kolmogorov-Smirnov table.

Data Sets: (see Tables 1, 2 and 3)

1. XI 3 ... , Xso i.i.d. Pa(1;2)

2. Y ... Yso i.i.d. Pa(S;S)

3. Nl, ... , W24 waiting times for "peaks" (i.e. R's) of heart-beat

cycles.

The critical value for data sets 1 and 2 is:

d( 4 8 ,.0 1 ) - 0.22

The critical value for data set 3 is:

d (22,.01) 0 0.314

The calculated statistic values are:

* 1D So CX) - 0.058 Decide PN.

2
D (X) = 0.058 Decide PN.

D I(Y) a 0.042 Decide PN.

2D Y( ) = 0.043 Decide PN.

D( 4) - 0.614 Decide N+S.
24

2 (W) = 0.605 Decide N+S.
24

-iD4

. r
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Example 7.1. A1, A2 known; sl, s2 unknown

PN: sI = 2 vs. N + S: s 1 s 2

m
-: n I ln(X /A)

Detector Statistic: T = =1 F(2m,2n)

m I ln(Y /A2 )

Decision Rule: Decide N + S iff

T > F(2m,2n,l-cL/2) or T < F(2m,2n,/2)

Data Sets: (See Tables 1 and 2)

1. X1, ... , X50  i.i.d. Pa(1;2)

2. YIp . " Y50  i.i.d. Pa(5;2)

3. Zi, ... , Z i.i.d. Pa(5;5)

The critical values are:

f(10 0 ,100 ,.9 9S) - 1.68

f (00,00,.OO5) -- o.s95

The calculated statistic values for each pair of data sets are given below:

From data sets 1 and 2: T = 0.788, so one decides PN.

From data sets 1 and 3: T = 1.868, so one decides N + S.

From data sets 2 and 3: T -0.422, so one decides N + S.

-. V -
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Example 7.2. A1, A2  unknown; s1, s2 known

PN: A1 = A2  vs. N +S: A 1 A2

Detector Statistic: T = in (XA) " F(x)

where ms I -ns 2xf (.sl+nS2  e x> 0

F(x) =
ns2 ms i x

, ~(msl.ns 2 )ex<0

Decision Rule: Decide N + S iff

T > C or T < C where F(c I  a/2

F(c2) = a/2

.ata Sets: (see Tables 1 and 2)

1. X1 , ..., XS0  i.i.d. Pg(1;2)

2. YIp ... Y50  i.i.d. Pa(5;2)

3. Zi, ..., Z50  i.i.d. Pa(S;S)

The first two data sets constitute a special case (s= 2 = s known)

and will be treated in Example 7.2a. For the remaininR two Dairs of

data sets, one has the following critical values: (m = n = SO,

s1  2, s2 a 5, a .01)

c1 =0.016 and c2 *-O.050

* *-



- 63 -

The appropriate decision rule is:

Decide N + S iff T > 0.016 or T < -O.OSO.

The calculated statistic values are given below:

From data sets I and 3: T = ln(;11 ) = 1.587, so one decides N + S.

From data sets 2 and 3: T = n(() = -0.008, so one decides PN.

Example 7.2a. A1, A2  unknown; s, = s 2 = s known

PN: AI = A2  vs. N + S: A I A2

Detector Statistic: T = Y(l)

X(l)

Decision Rule: Decide N + S iff T < b or T > b 2

weeb N OL 1/s N a -l/ns 0

Data Sets: (See Table 1)

2. Y1, ... , Yso i.i.d. Pa(5;2)

The critical values, for a=.01 are:

b I a0.95 and b 2 .1.05

The calculated statistic value is

X(l)

" ="-'~~~~ - G)'- 4.2 Decide N-u-m,' + S.m '. ..



- 64 -

Example 7.3. A = A2 = A unknown, sl, s2 unknown

PN: sI <S 2  vs. N S: s >s 2- 1 2

Detector Statistic: T = -

where
m

, . in X.- m In X(l)j=l :

and
n n

Il In X + In Y. NWj =1 j.1 3

where W = nin {In X(l), In Y(l)}

Decision Rule: Decide N + S iff T < c where c is determined by

Ic(m - 1, n) = 1 -

Data Sets: (See Tables I and 2)

1. X ... , i.i.d. Pa(5;2)

2. YIs ""' Y i.i.d. Pa(5;S)so
Computation of critical value:

SI(49,50) a 0.99 (take t = .01)

c - 0.61 (from tables of Incomplete Beta function)

The decision rule is:

Decide N + S iff T < 0.61

Since T 40.91 694
40.91

"" "- --- ." .,-, ', . i m a is m ". . . .. . .
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one decides PM.

Example 7.4. A1. unknown; s u s 2 s unknown

PN: A. <A 2VS. N +S: A I> A2

Detector Statistic: T = in X(i)

n I .X + I ln Y NW

and c' is determined by

n lN- 2

(-P 0

Data Sets: (See Tables 1 and 2)

1. X1, ... , X50  i.i.d. Pa(1;2)

2. Y1, ... 'I so i.i.d. Pa(5;5)

Computation of critical value (ct .01):

so - 98( I -)C c ) =.01

c'- .04

.so

sone d e 129.73 ad i0

Example 7.4. A1, 29. unknown) .s2 - .128 =  unnw

1_N:A 2 v. N+._S 1 >A
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since T a .024, one decides PN.

Example 7.5. AI, A2 unknown; Sl, s 2 unknown

PN: s 1  s 2  vs. N +.S: s I  s 2

(n - 2)n I
Detector Statistic: T = - 2)n 2  F Cm-1), 2(n-1))

M-1 XJI
where nI I In

jul

and
n-I Y(j + 1)

2 =! S Y(1)

Decision Rule: Decide N + S iff

.T > £C2Cm-l),2(n-l), (I-a/2))

or

T < £(2(--).2(n-11,o/2)

Data Sets: (see Tables 1 and 2)

1. Xl, ... , X5 0  i.i.d. Pa(l;2)

2. Y1, "". Yso i.i.d. Pa(S;2)

3. Z1 , ... , Zso i.i.d. Pa(S;S)

Critical values:.

f (9 8 ,9 8 ,0 .99) - 1.69

f(98,98,0.01) - 0.592
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I

The decision rule is:

Decide N + S iff T > 1.69 or T < .592

For data sets 1 and 2: T a 0.760, so one decides PN.

For data sets 1 and 3: T a 1.779, so one decides N + S.

For data sets 2 and 3: T a 0.427, so one decides N + S.

Example 7.6. No techniques for Case 7.6 have been develoved by

the authors.

Exaple 7.7. A1, A2 unknown; s3, s 2 unknown

P1: (A s 1) "CA2, s2)  vs. N +S: (A,, s1) A2' s2)

Detector Statistics

M T 1 - 2) n2 ( F 2-1,2(n-1))

N(N-2)tInX(t) - lnYCl)i F(22N4)( a n ) (ii) T 2  a 4 (n I + n2 )  F( , N 4

Decision Rule: Decide N + S iff

(i) T1 > fc 2 (m-i), 2 n-1),l-a/ 4 ) or

T! < fc~mZC-la4

(ii) If u/4 . T1 -fl.,/4

decide N .S iff

T>T2 > (2,2N-4,1-a/2)
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Data Sets: (see Tables 1 and 2)

1. X1 , ..., X50  i.i.d. Pa(1;2)
!2. YI' ..., Y so i.i.d. Pa(5;2)

3. Zip ..., Zso i.i.d. Pa(5;5)

Critical values (a = .01):

(i). f(9 8 ,9 8 ,.9975) = 1.77

f (98,98,.002S) " S65

(ii) f(2,196,.995) =5.3

Decide N + S iff

(i) T1 > 1.77 or T1 < .565

(ii) If .565 < T1  1.77, decide N + S iff T2 > 5.35

1. For (X, Y), T1 a 0.760, T 39.102 so one decides N + S.

2. For (X, Z), T1 = 1.779, T2 a 57.682 so one decides N + S.

3. For (Y, Z), T1  0.427, T2 = 0.251 so one decides N + S.1 2
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